🎾 Wspólny Mianownik 12 I 15
August 2018 3 100 Report. Jaki jest wspólny mianownik liczb 3, 5, 7, 4, 8 i 9? pietrek123 Najłatwiejszą metodą stworzenia wspólnego mianownika jest pomnożenie tych liczb. 3*5*7*4*8*9=30240. 3 votes Thanks 3. misiuzioms 2520 to najmniejszy, a najprostszy: 30240= 3*5*7*4*8*9. 3 votes Thanks 6.
Ułamki zwykłe wspólny mianownik Przykłady z naszej społeczności Liczba wyników dla zapytania „ułamki zwykłe wspólny mianownik”: 833
Pomóż znaleźć wspólny mianownik! 2010-09-03 15:54:24; Wspólny mianownik!?. 2009-10-11 15:38:30; bo 12 da się podzielić przez 6 i 4. Jest to też
Za wspólny mianownik można uznać wskaźnik różnorodności biologicznej dotyczący użytkowania gruntów przedstawiony w załączniku IV do rozporządzenia EMAS. El indicador de biodiversidad relativo a la ocupación del suelo, previsto en el anexo IV del Reglamento del EMAS, se puede considerar un denominador común .
Sprowadź do wspólnego mianownika i porównaj(Jak najmniejszy mianownik!!!)9 I 16 i 7 I 243 I 16 i 5 I 122 I 15 i 7 I 9. Question from @Piesel69 - Gimnazjum - Matematyka
Dopasuj najprostszy wspólny mianownik do poniższych wyrażeń wymiernych 1 x 2 + 2 x-3 oraz 1 x 2 + 5 x + 6. Możliwe odpowiedzi: 1. Możliwe odpowiedzi: 1. x + 3 x + 2 x - 1 , 2.
Wiersze - wspólny;) 2010-02-23 19:26:09; Wspólny mianownik to ? 2012-01-29 16:09:05; Wspólny mianownik/./ 2010-03-03 18:00:48; Wspólny mianownik !? 2009-09-15 18:28:31; wspólny mianownik? 2010-09-14 15:55:27; Wspólny mianownik !?. 2009-10-11 15:38:30; Wspólny mianownik 2013-12-01 12:42:43; Wspólny Tatuaż 2013-08-21 14:35:50; wspólny
Oczekiwanie na dane Za pomocą tego kalkulatora w prosty sposób znajdziesz najmniejszy wspólny mianownik danych liczb i ułamków. Dzięki temu kalkulatorowi możesz łatwo przeliczyć poszczególne liczby na ułamki z konkretnym mianownikiem i ułatwić sobie dodawanie lub odejmowanie ułamków.
2/3 oraz 3/8 = najmniejszy wspólny mianownik to 24, a więc 16/24 i 9/24 5/12 oraz 3/4 = najmniejszy wspólny mianownik to 12, a więc 5/12 oraz 9/12 7/6 oraz 5/9 = najmniejszy wspólny mianownik to 18, a więc 21/18 oraz 10/18
Aby znaleźć najmniejszy wspólny mianownik ułamków, należy obliczyć dla wartości z mianowników Najmniejszą Wspólną Wielokrotność, a następnie rozszerzyć do niej ułamki. Ułamek warto wpierw skrócić, żeby w mianowniku nie otrzymać zbyt wysokiej liczby: Najmniejszą wspólną wielokrotnością liczb i jest ich iloczyn, zatem:
Z tej wideolekcji dowiesz się: - co zrobić, gdy musisz dodać do siebie ułamki o różnych mianownikach, - jak znaleźć wspólny mianownik dwóch ułamków zwykłyc
Zapraszam na facebooka www.facebook.com/darmowa.nauka.matematykiNAUKA MATEMATYKI to kanał na youtube, dzięki któremu będziecie mogli nauczyć się całkowicie z
fuH4mSD. loocash Użytkownik Posty: 22 Rejestracja: 21 paź 2008, o 16:18 Płeć: Mężczyzna Lokalizacja: znikad Podziękował: 5 razy Wspólny Mianownik Witam chciałbym napisać algorytm liczący wspólny mianownik wielu ułamków np. 100 000. Oczywiście wiem jak to zrobić, ale wydaje mi się, że złożoność mojego programu nie jest zadowalająca i ujawniła by się właśnie przy dużej liczbie ułamków. Można założyć, że liczniki wszystkich ułamków są równe 1. przykład: \(\displaystyle{ \frac{1}{2} , \frac{1}{3} , \frac{1}{2} , \frac{1}{6}}\) Oczywiste jest, że wynikiem jest 6. Skoro liczniki równe są 1, do programu wpisywane są tylko mianowniki. program ma wypisać wspólny mianownik. Proszę tylko o wzór. Dla dwóch liczb byłoby to bardzo proste ale co z np. 1000 liczb? Z góry dziękuję i pozdrawiam. matshadow Użytkownik Posty: 941 Rejestracja: 17 gru 2007, o 21:48 Płeć: Mężczyzna Lokalizacja: Kingdom Hearts Podziękował: 6 razy Pomógł: 222 razy Wspólny Mianownik Post autor: matshadow » 1 gru 2008, o 23:22 ja bym skorzystał ze znanej właściwości, czyli NWW(a,b,c)=NWW(NWW(a,b),c) int x= NWW (a,b), a potem x=NWW(x,c), x=NWW(x,d) itd spajder Użytkownik Posty: 735 Rejestracja: 7 lis 2005, o 23:56 Płeć: Mężczyzna Lokalizacja: Łódź Podziękował: 2 razy Pomógł: 133 razy Wspólny Mianownik Post autor: spajder » 2 gru 2008, o 13:58 a ja bym skorzystał z algorytmu euklidesa do obliczenia nwd a potem z własności: \(\displaystyle{ NWW(a,b) = \frac{ab}{NWD(a,b)}}\) algorytm Euklidesa jest znany i bardzo szybki (ja przynajmniej o lepszym nie słyszałem) matshadow Użytkownik Posty: 941 Rejestracja: 17 gru 2007, o 21:48 Płeć: Mężczyzna Lokalizacja: Kingdom Hearts Podziękował: 6 razy Pomógł: 222 razy Wspólny Mianownik Post autor: matshadow » 2 gru 2008, o 15:37 owszem, ale ten algorytm obliczy tylko NWW dwóch liczb, a mój sposób wielu liczb Czyli podsumowując, trzeba połączyć mój sposób z twoim loocash Użytkownik Posty: 22 Rejestracja: 21 paź 2008, o 16:18 Płeć: Mężczyzna Lokalizacja: znikad Podziękował: 5 razy Wspólny Mianownik Post autor: loocash » 2 gru 2008, o 17:54 Już zaimplementowałem. Wszystko ładnie, pięknie na małych liczbach. ale na dużej ilości oraz zróżnicowanych mianownikach coś go strzela wypisuje trochę za dużą tą liczbę(największą wspólną wielokrotność). Pracuję nad tym cały czas. Podasz mi przykładową Twoją implementację takiego programu? najlepiej w c. program wczytuje n czyli liczbę mianowników, mianowniki, oblicza dla nich NWW i wypisuję wynik. matshadow Użytkownik Posty: 941 Rejestracja: 17 gru 2007, o 21:48 Płeć: Mężczyzna Lokalizacja: Kingdom Hearts Podziękował: 6 razy Pomógł: 222 razy Wspólny Mianownik Post autor: matshadow » 2 gru 2008, o 18:21 W C++ Kod: Zaznacz cały#include using namespace std; long long tab[1000000],x; long long nwd(long long a, long long b) { while(b!=0) { long long c=a%b; a=b; b=c; } return a; } long long nww(long long a, long long b) { b/=nwd(a,b); return a*b; } main() { int n; cin>>n; for(int i=0;i>tab[i]; x=nww(tab[0],tab[1]); for(int i=2;i using namespace std; unsigned NWW(unsigned a, unsigned b); int main() { const int size=10000; int mianowniki[size]; memset(mianowniki, 0, size); int liczba, i=0; while(liczba!=0){ cin>>liczba; mianowniki[i++]=liczba; } if(ib) a-=b; else b-=a; return iloczyn/a; } matshadow Użytkownik Posty: 941 Rejestracja: 17 gru 2007, o 21:48 Płeć: Mężczyzna Lokalizacja: Kingdom Hearts Podziękował: 6 razy Pomógł: 222 razy Wspólny Mianownik Post autor: matshadow » 2 gru 2008, o 19:37 Moraxus pisze: while(a!=b) if(a>b) a-=b; else b-=a; Dla dużych liczb się nie wyrobi, za to zastosowany przeze mnie algorytm tak Moraxus Użytkownik Posty: 223 Rejestracja: 23 lis 2008, o 18:10 Płeć: Mężczyzna Podziękował: 3 razy Pomógł: 79 razy Wspólny Mianownik Post autor: Moraxus » 2 gru 2008, o 20:13 Gwarantuje Ci, że spokojnie wyrobi się dla wszystkich liczb, które zmieszczą się w long long. Nawet nie zauważysz różnicy. Chociaz może rzeczywiście lepiej zrobić tak jak ty. Tak czy siak sam algorytm na NWW 2 liczb skopiowałem gotowy, chodziło mi o pokazanie jak je policzyć dla większej ilości liczb.
Jaki to ulamek licznik jest rowny 7a mianownik jest o 4wiekszy,mianownik jest równy 12 a licznik jest dwa razy mniejszy, licznik jest równy 6,a mianownik jest o 2 większy,licznik jest równy 3,a mianownik jest trzy razy wiekszy,licznik jest o 3 większy od 5a mianowniko tyle samo mniejszy o 5,licznik jest cztery razy mniejszy od 8a mianownik czteryrazy większy Answer
Niepokonana Użytkownik Posty: 1337 Rejestracja: 4 sie 2019, o 11:12 Płeć: Kobieta Lokalizacja: Polska Podziękował: 310 razy Pomógł: 12 razy Wspólny mianownik Witam, proszę o pomoc, przepraszam, że tak dużo, ale natknęłam się na ciekawe zadanie i mi nie wychodzi. Udowodnij, że jeżeli \(\displaystyle{ \frac{1}{a}+ \frac{1}{b}+ \frac{1}{c} = \frac{1}{a+b+c} }\), to przynajmniej dwie z liczb \(\displaystyle{ a,b,c}\) są przeciwne. Próbowałam przekształcić lewą stronę, ale nie wiem jak, żeby mianownik był \(\displaystyle{ a+b+c}\) Janusz Tracz Użytkownik Posty: 3588 Rejestracja: 13 sie 2016, o 15:01 Płeć: Mężczyzna Lokalizacja: hrubielowo Podziękował: 77 razy Pomógł: 1243 razy Re: Wspólny mianownik Post autor: Janusz Tracz » 18 sty 2020, o 19:11 Można policzyć różnicę tych ułamków \(\displaystyle{ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - \frac{1}{a+b+c}= \frac{(a+b)(a+c)(b+c)}{abc(a+b+c)}=0 }\) Więc \(\displaystyle{ a=-b \vee a=-c \vee b=-c}\) a4karo Użytkownik Posty: 20400 Rejestracja: 15 maja 2011, o 20:55 Płeć: Mężczyzna Lokalizacja: Bydgoszcz Podziękował: 27 razy Pomógł: 3454 razy Re: Wspólny mianownik Post autor: a4karo » 18 sty 2020, o 19:15 Pokaz najpierw, że wszystkie trzy liczby nie mogą mieć takiego samego znaku Potem możesz założyć, że `a,b>0,\ c<0` (uzasadnij dlaczego) Przenieś `1/c` na prawo, sprowadź obie strony do wspólnych mianowników. Zobacz jakie równanie kwadratowe spełnia `c` Dodano po 3 minutach 57 sekundach: SPosób JT jest prostszy. Po prostu sprawdż, że zachodzi taka tożsamość (troche sie trzeba naliczyć) Niepokonana Użytkownik Posty: 1337 Rejestracja: 4 sie 2019, o 11:12 Płeć: Kobieta Lokalizacja: Polska Podziękował: 310 razy Pomógł: 12 razy Re: Wspólny mianownik Post autor: Niepokonana » 18 sty 2020, o 19:24 A że to trzeba tak jakby równanie. A Pana sposobu nie rozumiem. kerajs Użytkownik Posty: 8210 Rejestracja: 17 maja 2013, o 10:23 Płeć: Mężczyzna Podziękował: 273 razy Pomógł: 3207 razy Re: Wspólny mianownik Post autor: kerajs » 18 sty 2020, o 20:20 Mam równanie: \(\displaystyle{ \frac{1}{a}+ \frac{1}{b}+ \frac{1}{c} = \frac{1}{a+b+c} }\) gdzie \(\displaystyle{ abc \neq 0 \wedge a+b+c \neq 0}\) Denerwują mnie ułamki więc obustronnie mnożę przez wszystkie mianowniki. Dostaję: \(\displaystyle{ (a+b+c)(bc+ac+ab)=abc }\) Jedną z liczb (konkretnie to \(\displaystyle{ a}\)) uznaję za niewiadomą, co mi daje równanie: \(\displaystyle{ a^2(c+b)+a(b+c)(b+c)+(b+c)bc=0\\ (b+c)\left[ a^2+a(b+c)+bc\right]=0\\ (b+c)(a+b)(a+c)=0 }\) Więc ..... a4karo Użytkownik Posty: 20400 Rejestracja: 15 maja 2011, o 20:55 Płeć: Mężczyzna Lokalizacja: Bydgoszcz Podziękował: 27 razy Pomógł: 3454 razy Re: Wspólny mianownik Post autor: a4karo » 18 sty 2020, o 20:29 W sumie, to co napisałem było prawie jak kerajsowe: $$\frac1a+\frac1b=\frac{1}{a+b+c}-\frac1c$$ $$\frac{a+b}{ab}=\frac{-(a+b)}{(a+b+c)c}$$ $$c^2+(a+b)c+ab=0$$ A rozwiązaniem tego ostatniego jest `c=-a` i `c=-b` (W sumie te uwagi o znakach mogłem sobie darować) Niepokonana Użytkownik Posty: 1337 Rejestracja: 4 sie 2019, o 11:12 Płeć: Kobieta Lokalizacja: Polska Podziękował: 310 razy Pomógł: 12 razy Re: Wspólny mianownik Post autor: Niepokonana » 18 sty 2020, o 20:39 Proszę o niegotowe rozwiązania. Teraz już tylko trzeba napisać wnioski. Dodano po 2 dniach 20 godzinach 2 minutach 55 sekundach:kerajs pisze: ↑18 sty 2020, o 20:20 Mam równanie: \(\displaystyle{ \frac{1}{a}+ \frac{1}{b}+ \frac{1}{c} = \frac{1}{a+b+c} }\) gdzie \(\displaystyle{ abc \neq 0 \wedge a+b+c \neq 0}\) Denerwują mnie ułamki więc obustronnie mnożę przez wszystkie mianowniki. Dostaję: \(\displaystyle{ (a+b+c)(bc+ac+ab)=abc }\) Jedną z liczb (konkretnie to \(\displaystyle{ a}\)) uznaję za niewiadomą, co mi daje równanie: \(\displaystyle{ a^2(c+b)+a(b+c)(b+c)+(b+c)bc=0\\ (b+c)\left[ a^2+a(b+c)+bc\right]=0\\ (b+c)(a+b)(a+c)=0 }\) Więc ..... A mógłby Pan bardziej szczegółowo opisać, jak przeszedł Pan od formy z ułamkami do formy bez ułamków? Pierwsza i druga linijka. Thingoln Użytkownik Posty: 133 Rejestracja: 27 lip 2019, o 22:19 Płeć: Mężczyzna Lokalizacja: województwo śląskie Podziękował: 52 razy Pomógł: 15 razy Re: Wspólny mianownik Post autor: Thingoln » 21 sty 2020, o 17:44 Mamy: \(\displaystyle{ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{a+b+c}}\) Mnożymy obustronnie przez iloczyn wszystkich mianowników, a więc przez \(\displaystyle{ a \cdot b \cdot c \cdot (a + b +c)}\), przez co otrzymujemy: \(\displaystyle{ \frac{a \cdot b \cdot c \cdot (a + b +c)}{a} + \frac{a \cdot b \cdot c \cdot (a + b +c)}{b} + \frac{a \cdot b \cdot c \cdot (a + b +c)}{c} = \frac{a \cdot b \cdot c \cdot (a + b +c)}{a+b+c}}\) A stąd, skracając mianowniki, mamy: \(\displaystyle{ bc(a+b+c) + ac(a+b+c) + ab(a+b+c) = abc}\) Myślę, że od tego momentu już wszystko jasne.
Odpowiedzi weoweo odpowiedział(a) o 11:33 Tutaj masz wszystko Opisane:) [LINK] sohbi odpowiedział(a) o 11:40 Zależy od liczników, bo może być 5, ale bez znajomości liczników 30 EKSPERTHerhor odpowiedział(a) o 12:08 Wspólny mianownik dla mianowników 10 i 15 to NWW(10,15).10= 2*515= 3*5NWW= 2*3*5 = 30 cola1238 odpowiedział(a) o 11:33 wspolny mkianownik to 100 bo 10 podzieli sie przez 100 i 15 tez wiec to jest na 100%poprawna odpowiedz Lisarie odpowiedział(a) o 11:33 Jeśli chcesz skrócić i ci nie wyjdzie 5 to pomnóż 10*15 i 15*10. blocked odpowiedział(a) o 11:35 Uważasz, że znasz lepszą odpowiedź? lub
Podoba Ci się te zadanie? Powinny zainteresować Cię także poniższe tematy. Nwd i nww Liczby pierwsze do 100 Kategoria:Podzbiory zbioru liczb rzeczywistych Równoległobok pole
wspólny mianownik 12 i 15